
AD-A282 836 £

ROBUST CONTROL OF
UNDERACTUATED MANIPULATORS:
ANALYSIS AND IMPLEMENTATION

Marcel Bergerman Yangsheng Xu

S DTICMU-RI-TR-94-12
ELECTE "
AUG 0 119943

The Robotics Institute

F Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

May, 1994

© 1994 Carnegie Mellon University

LThis ro- .Ls Deen upr'.Ved
o' public neie . d s(ale; its

distibution 1s anioit.&

94-24161I 11I11111lllll111l11111ll1ll111l1

This research is partially sponsored by the Brazilian National Council for Research and Development
(CNPq). The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies or endorsements, either expressed or implied, of CNPq or
Carnegie Mellon University.

94 7 29 095



Table of Contents

1 Introduction 1

2 Model Partition 3

3 Robust Control 6

3.1 Variable Structure Controller 6

3.2 VSC Design 7

3.3 Robustness Issues 9

4 Case Study 10

5 Simulation Results 12

6 Conclusion 16

7 Acknowledgments 16

8 References 17

Accesion For
NTIS CRA&I

DTIC TAB
Unanrtioui;ced QJ
Justification
J.................

By,,~ 21 i zl

Availability Codes

Avail and I or
Dist Special



List of Figures

Figure I Three-link manipulator with one passive joint .................................. 19

Figure 2 Two-link manipulator with one passive joinL ................................... 19

Figure 3 Determinant of for the 2-link manipulator. ....................................... 19

Figure 4 Determinant of for the 3-link manipulator ....................................... 20

Figure 5 Response of the 2-link manipulator. Experiment #1 ......................... 20

Figure 6 Response of the 2-link manipulator. Experiment #2 ......................... 20

Figure 7 Animation of the 2-link manipulator. Experiment #2 ........................ 21

Figure 8 Response of the 2-link manipulator. Experiment #3 ......................... 21

Figure 9 Response of the 3-link manipulator. Experiment #4 ......................... 21

Figure 10 Animation of the 3-link manipulator. Experiment #5 ..................... 22

Figure 11 Response of the 2-link manipulator. Experiment #1 with

control law from [1] ......................................................................... 22

Figure 12 Response of the 2-link manipulator. Experiment #2 with

control law from [1] ........................................................................ 22



vii

List of Tables

Table 1 Numerical values of the dynamic parameters ...................................... 12

Table 2 Summary of experiments performed. .................................................. 14

Table 3 Summary of results obtained .............................................................. 14



ix

Abstract

Underuated manipulators are robot manipulators composed of both active and passive
joints. The advantages of using such systems reside in the fact that they weight less and con-
sume less energy than their fully-actuated counterparts, thus being useful for applications
such as space robotics. Another interest reside in the reliability or fault-tolerant design of
fully-actuated manipulators. If any of the joint actuators of such a device fails, an entire
operation may have to be aborted because of the loss of one or more degrees of freedom.
The methodology proposed in this paper uses the dynamic coupling between the passive

joints and the active joints, and controls the active ones in order to bring the passive joint
angles to a desired set-point. Therefore, the control law and the performance of the system

are completely dependent on the dynamic model. Since it is difficult to obtain the exact

dynamic model of the system in general, considerable position errors and even instability

can result in some cases. In this paper, we propose a variable structure controller to provide
the system with the robustness necessary to perform tasks regardless of the modelling

errors. Case studies are provided as a mean of illustration.



1 Introduction

In this work, the authors deal with the problem of robust position control of underactuated

manipulators. Here, the word underactuated refers to the fact that the manipulator has less

actuators than joints. The advantages of using such systems reside in the fact that they weight

less and consume less energy than their fidly-actuated counterparts, thus being useful for

applications such as space robotics. For hyper-redundant robots, such as snake-like robots or

multilegged mobile robots, where large redundancy is available for dexterity and specific task

completion, underactuation allows a more compact design and simpler control and

communication schemes. Another interest reside in the reliability or fault-tolerant design of

fully-actuated manipulators working in hazardous areas or with dangerous materials. If any

of the joint actuators of such a device fails, one degree of freedom of the system is lost. It is

usual in this situation to simply brake the failed joint and try to resume the task with less

degrees of freedom available [8]. Following the methodology proposed in this work, the

passive (failed) joint can still be controlled via the dynamic coupling with the active joints,

and so the system can still make use of all of its degrees of freedom originally planned. For

example, in the extreme case of a two DOF manipulator performing pick-and-place

operations, the loss of one DOF would be fatal for the planned task. The results in section 5,

however, show that it is possible to control the failed joint and continue with the task

successfully.

Not until recently researchers started to work with the control problem of underactuated

manipulators. In [ 1], Arai and Tachi proved that, at least in a local sense, the number of active

joints must be equal or greater than the number of passive ones in order to be possible to

control the passive ones. They also developed a controller which is very similar to the

classical computed torque controller, to bring all joints to their desired set-points. The

drawback existent in this approach is that a very accurate model of the manipulator must be

provided to the controller. The approach by Papadopoulos and Dubowsky [12], considered

the failure recovery control of a space robotic manipulator. In this work also the authors used

a computed torque controller, which requires an accurate model of the system. Oriolo and

Nakamura [11] showed that there does not exist any smooth control law that guarantees that

the system will stabilize at an equilibrium point. Therefore, one must either give up

smoothness in the control law, or be satisfied with stabilization to equilibrium manifolds.

They showed that a simple PD controller is able to bring the system to a stable configuration

over an equilibrium manifold. They also present a detailed consideration about the conditions

for integrability of the nonholonomic constraint present in underactuated manipulators.
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Finally, Jain and Rodriguez [7 provided an analysis of the kinematic and dynamic issues of
this kind of robotic system, using the spatial operator algebra. Control issues were not taken

into account in this work.

Hereafter, we will refer to active joints as the ones which are fully-controlled via an
actuator. Analogously, passive joints are those who cannot be controlled directly, but which
are equipped with a brake. It is assumed that all joints, passive and active, have position
encoders that provide a complete knowledge of the joint angles at every sampling instant. We

will denote by n the total number of joints, and by r the number of actuators. The number of

passive joints is thus p = n - r. Following [1], our method requires that at least half of the

joints be actuated. Also following the assumptions in [1], [121, we assume that there is
enough dynamic coupling between the passive and the active joints, for it is clear that if this
coupling is too small (or does not exist at all), it will be impossible to change the position of
the passive joints by simply moving the active ones. Consider for example a Cartesian 3-link

manipulator. Theoretically, there is no coupling at all between the links, and a passive joint
could never be controlled using the active ones.

The control methodology proposed in this paper uses the dynamic coupling between the
passive joints and the active joints, and controls the active ones in order to bring the passive

joint angles to a desired set-point. After the passive joints reach the set-point, they are braked,
and the active ones can be controlled to their desired position via any of a series of controllers

fully developed in the literature for mechanical manipulators. Because the control of such a

system is fully dependent on its dynamic model, modelling must be accurate. The fact that
the performance depends on accurate modelling can be understood in terms of the following
rationale: first, the control scheme depends on modelling accuracy, and thus modelling errors

can result in tracking errors and instability. Second, the coupling between the active and the

passive joints depends on the dynamic parameters, and is subject to errors if there are
uncertainties on the values of these parameters. Third, one usually specifies the desired

motion of the end-effector in Cartesian space, and maps this motion to joint space, where

control is executed. This mapping now is related to the dynamic parameters, and becomes

uncertain if some parameters are unknown. Last, for conventional robots a local PID scheme
without a model-based feedforward controller may provide good trajectory tracking results.
For underactuated manipulators, however, it is impossible to control the system with simple

PID schemes, because of the coupling between the joints.

Because modelling error is so critical to the system's performance, and because there has
not been much work addressing this issue, we present a variable structure controller in order
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to provide the system with the robustness necessary to perform tasks regardless of the

modelling errors.

We address the computational procedures, simulation results and implementation issues

of the proposed scheme, In comparison to other approaches, this work demonstrates

robustness to dynamic parameters uncertainty and efficiency in implementation.

2 Model Partition

The dynamic modelling of underactuated manipulators differs little from the modelling

of fully-actuated ones, the only difference being that the torque applied at the passive joints

is constant and equal to zero. By using either the Newton-Euler method or the Lagrangian

formulation [4], one can easily obtain the following dynamic description of an open-chain

mechanical manipulator, whose links are considered as rigid bodies:

T = M(q)q+b(q,q) (1)

In (1), M(q) is the n x n inertia tensor matrix of the manipulator, and b (q, 4) is the n x 1

vector representing Coriolis, centrifugal and gravitational torques. The vector c represents

the torques applied at the active joints, and it is a n x 1 vector with p components equal to

zero.

One of the important issues when dealing with underactuated manipulators is to correctly

perform a partition of the dynamic equation (1). Such a partition is important to show the

coupling between the passive and the active joints, and it is given as follows:

[01a= [bM (2)

r p

The submatrices of M in (2) receive their indexes according to the variables they relate. For
example, M a relates the (null) torques at the passive joints to the acceleration of the active

ones. The same reasoning holds for the other three submatrices. This partition is very useful
to understand the dynamic coupling between the passive and active joints of an underactuated

manipulator. Namely, from the second lire of (2), we can find out the relationship between

#a and Ip
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M a4 +Mp4p+bp = 0 (3)

Since this type of manipulator can only produce torque at the active joints, and thus

control q,4 directly, equation (3) shows that we can control 4p indirectly, as long as the

submatrices Mpa and M., have a structure that "allows" torque to be transmitted in a desired

way from the active to the passive joints. In this work, we will assume that this transmission

is always possible, i.e., that there is enough dynamic coupling to drive the passive joints.

Current work is being done on the characterization of this transmission, with a possible

extension to optimal actuator placement.

As was demonstrated in [1], the number of joints that can be controlled at any moment is

equal to the number of active joints. Thus, at the beginning of the operation, we can control

all p passive joints (via dynamic coupling) and r - p active ones. These r joints to be

controlled are then grouped in the vector qc. When r = p, this vector contains only passive

joints. For example, for the 3-link manipulator shown in figure 1, with joints 1 and 2 active

and joint 3 passive, qc is a two-dimensional vector containing the passive joint q3 and one

active joint. At this point, one could choose either ql or q2 as the active joint to be controlled

first. Since the joints can be arranged arbitrarily in qc, we end up with four possible

combinations for this rather simple manipulator. We opted here to stack the passive joints at

the end of the vector qc, and to choose the active joints closer to the base to be controlled

first. This choice is based on the fact that, in general, the joints closer to the base are larger

and more massive, and thus slower. If they are controlled to their set-points from the

beginning of the operation, and not only after the brakes are applied, one can expect reduced

settling times. With the above rationale, the choice of qc for the manipulator in figure 1 is:

q¢ = [qt q3 T  (4)

Since we can control r joints at a time, the partitioned equations represented by (2) are

not very useful, since they do not show explicitly which joints are grouped into qc. To this

end, we consider a second possible partition of (1), to be used in the control algorithm:

H] = r M _1 I (5)
P r
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Naturally, the vector qd. where the index d stands for "driving joints", as opposed to c,

which stands for "controlled joints", contains p active joints to be controlled after the joint

angles of the joints qc reach their set-point.

It is necessary to come up with a systematic way to choose qc and qd for a generic n-link

manipulator with r actuators. We propose here a set of four matrices that perform this
selection, based on the rationale given before. Consider a general n-link manipulator with

joints numbered 1,..., n from base to the tip, and form the matrices MIe 9trxn,

M2 e p x 8, Ti n , e 90 xP, M e t according to the following algorithms:

i =1; j =n;
while i:5 r do

if joint j is active then
M (,j) = 1; i = i + 1;

= j -1;

i=;j=n;
while i:5 p do

if joint j is passive then
M2 (iJ) = 1;i=+i+;

j=j-1;

i =;j = n;
while i:5 p do

if joint j is active then
MI(j,i) = l;i=i+1;

j=j-1;

i=1;j=n;
while i5p do

if joint j is passive then
M 2 (j,i) = l;ifi+1;

jfj-1;
i = 1; j = 1;
while i < (r - p) do

if joint j is active
M2 (j,i) = 1;ifi+1;

j=j-1;
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Note that the matrices thus formed consist only of zeros and ones, and that their dimensions

depend only on n and r. The desired partition is given by:

Had=MMM Hac =MIMM2  Hpd = M2MM H M2M 2

ba = Mlb bp M2 b

qd = -iTq (6)

"Ta = M l

In section 4 two examples that make use of these matrices will be presented, specifically

for 2- and 3-link manipulators.

3 Robust Control

3.1 Variable Structure Controller

In this section we develop a variable structure controller (VSC) that will guarantee

convergence of the joint angles to a desired position, despite possible modelling errors.

The idea behind the VSC is to force the system's state trajectory to converge to a pre-

defined surface in the state space. Once the system reaches this surface, it will "slide" along

it to the origin; this is the reason for this surface being called sliding surface [5]. Once the

system is sliding over this surface, its dynamics are described by the equation of the surface

and not by its original ones. Thus, modelling errors do not affect the system's performance

after the sliding begins. Naturally, two aspects are important in this class of controllers: first,

the sliding surface must be designed accordingly to the desired system's performance once

the sliding takes place. Linear surfaces are the most common, given their design simplicity.

For example, a linear sliding surface for a second order system could be:

s = ce+i (7)

where e would be the error between the desired and the actual state, and c a (generally

diagonal) gain matrix.

Second, a control law must guarantee that the sliding surface is reachable, and that the

time it takes for the state trajectory to reach it is finite. This second requirement is guaranteed

in a region "close" to the sliding surface if, in this region,
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SJ<O (8)

where s(x) = 0 is the description of the sliding surface s as a function of the state x.

3.2 VSC Design

Variable structure controllers have been applied to standard manipulators, and very good

results have been obtained regarding trajectory tracking and disturbance rejection (see, for

example, [2], [3], [5), [9]). Here, we propose a VSC for the underactuated case.

Differently from fully-actuated manipulators, underactuated ones cannot have all their

joint accelerations controlled at every time step. Since they have only r actuators, it is

possible to control r accelerations at a time [1]. The other p accelerations will depend on the
r controlled ones. To see this, from the second line of (5) we have:

= -M_- (Mppc c )  (9)

Thus, if we try to control 4c, then 4d is fixed and cannot be arbitrarily chosen. Only after the

brakes are engaged can the driving joints' accelerations ba controlled.

Define the following r-dimensional sliding surface:

Sc = Ccic qc (10)

wherei = xd= - x is the error on variable x, and cc is an r x r matrix containing the time-

constants of each surface. If the VSC can make 4c to be equal to the following computed

acceleration:

qc = Ccq+qc, d+ Pcsgn (Sc) (11)

where Pc is an r x r matrix, then the time derivative of sc will become:

c = Ccqc + qc, d- qc = -Pcsg n (sc) (12)

Equation (12) then guarantees that (8) is satisfied for s c , if one chooses appropriate values

for the entries of Pc; and this in turn guarantees that the joint errors will converge to zero

exponentially, the convergence rate being determined by the elements of cc. Finally, in order
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to obtain the computed acceleration qc, we compute #d in (9) using qc instead of 4c, and

then substitute the obtained value of qd in the first line of (2):

Ca f= (Mac- MadM-p ) c- Ma d~i bp + ba (13)

The torque given by (13) guarantees that 4c = qc, therefore the joints grouped in qc will

converge to their desired positions. At this point, one has several options for the braking

sequence of the passive joints and controlling of the system, namely:

* brake each passive joint as soon as they reach their set-points with zero velocity; wait

until all passive joints are braked and the r - p active joints in qc also reach their set-point;

control the remaining joints in qd;

* brake each passive joint as soon as they reach their set-points with zero velocity; wait
until all passive joints are braked; switch to a new control law in order to bring all active

joints to their desired set-points;

* brake each passive joint as soon as they reach their set-points with zero velocity; after

every passive joint is braked, switch to a new control law that includes one more active joint

into qc in substitution for the braked joint.

The first formulation provides the slowest response, while the third is the most complicate

to implement. It is natural, thus, to choose the second one, which is faster than the first and

simpler than the third. In order to implement the second methodology, we first note that after

all passive joints are braked, the new dynamic equation of the system is simply:

Ica = Maada + ba (14)

where now Maa and qa can be obtained as:

Maa = MMMT" qa = Mlq (15)

Following the same reasoning as above, let's define:

Sa = Cala + qa (16)
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where ca is an r x r matrix. If we can make the acceleration of the active joints, 4a' to be

equal to the following computed acceleration:

qa = caqa qa, d+ PaSgn(S ) (17)

where Pa is an r x r matrix, then:

'a = Caqa + 4a, d-qa = -PaSgn (Sa) (18)

Using qa in (14) instead of qa will then guarantee that (18) is satisfied. The design is

complete and all joints are guaranteed to converge to their desired position after a finite time.

It should be mentioned here that the control laws (13) and (14) introduce an undesired

chattering into the system, because of the sgn(.) functions in (11) and (17). This problem can

be solved with the addition of a boundary layer around the sliding surface. For this sake, we

substitute the function sgn(.) for the following one:

sn (x) if xk e
sgn (x) - x if x< (19)

In this expression, e is the "thickness" of the boundary layer, pre-defined by the user.

3.3 Robustness Issues

The control methodology presented above provides the system with a great deal of

robustness, because the system is forced to slide along the sliding surface. Therefore,

modelling errors will not deteriorate the performance once the sliding begins. However, the

methodology makes full use of the system model in order to guarantee that the sliding occurs.

Consequently, modelling errors may affect the performance by inhibiting the state

trajectories to reach the sliding surface.

To overcome this problem, we consider a very simple model of the manipulator for

control purposes, which takes into account only the inertia matrix [3], [9]:

(t) = M (q) # +f(t) (20)
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The quantityfft) represents the uncertainty and modelling errors in the dynamic model. This

"disturbance"ftt) can be estimated via:

f() = '(t-A) -M[q(t) (t) (21)

The value obtained above may be low-pass filtered in order to eliminate high-frequency

components derived from numerical differentiation.

If (20) is to be used instead of (1) for control purposes, then one should substitute every

occurrence of b (q, 4) in the control algorithm forfft). If the system stabilizes with the use

of this new control law, then we can affirm that robustness to parameter uncertainty was

obtained.

4 Case Study

Before presenting the results of the simulations, we will present here the partitioning of

two- and three-link manipulators. These results will be used in the next section.

Figures 1 and 2 present the manipulators to be used in the simulations. Considering first

the 2-link manipulator, the desired matrices are:

#i = [ o] (22)

M2 = =E[o = ]

which lead to the following partitioning:

Md ][ IM 1Z=IM1 (23a)
[Al 1 o 1L[, J =M 11

.,, -[1 o]LM[1']J M- =
12  (23b)

M, =[or, - = M,2 (23d)LIg u ..i
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b,, 1 = 11 (23e)

[]= , - = kH! C[(230

As for the 3-ink manipulator, with actuators at joints I and 2, we get:

M I =- , 0- = 0 1 [o] (24)

' = [o o]i -[1001

Al11 M112 MI -

oMad 0 21 JM22 1 23 M j (25a)
100 M°31 32M32 N3 O

,[A 11 M12 M 13 ]ri M21M2
, 00] M2 7rM,, I0 M=r 3 (25b)

Ml31 M32 M33 0 1] = l1 [ 1  2

"l 12 M13 o

M,, M21 M22 M23 , M32 (25c)
lM31 M 32 M3

,',M21, Mo22 I"' M23I [, , (25d)
MA31 Ml32 M33 L011, o Alr2Al11![,ol]r,,,l,,l,

=~ M n 12M1321 lM22M3 0 22M1 2e
0l Li 00 M10100 M31 M 32 M 33 0 12 Al1

b i 2 d q2] 21

-] = -, -J [ (25f)
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5 Simulation Results

For simulation purposes, the following values were adopted for the dynamic parameters

of the manipulators.

Table 1: Numerical values of the dynamic parameters.

PARAMETER 2-LINK 3-LINK

m1 (Kg) 2.0 2.0

m2 (Kg) 1.0 1.0

m3 (Kg) .... 1.0

I1 (Kg m2 ) 0.2 0.2

12 (Kg m2) 0.1 0.1

13 (Kgm 2) --- 0.1

I1 (m) 0.3 0.3

12 (m) 0.3 0.3

13 (in) -- 0.3

lC, (M) 0.15 0.15

1C2 (M) 0.15 0.15

lC3 (in) 0.15

Using these values and the partitions presented on section 4, we can easily perform a pre-

analysis of the dynamical singularities of both manipulators. The idea is to compute the

determinant of the matrix MPd and check to see if it is below some specified threshold over

all possible values of q. In our case, the sub-matrix Mpd for the 2-link manipulator is a

function of 02 , and for the 3-link one, a function of 03. Figures 3 and 4 show the value of
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dt (Mpd) over the entire possible range of the mentioned angles. As we can see, there are

no dynamical singular points in both cases, Le.,

det (Mpd) * O, Vq 5 90 (26)

In other words, we can make the manipulator go from any initial to any final position without

concerning with the inversion of the sub-matrix Mpd.

In the cases where these dynamic singularities may occur, the performance of the system
is compromised. One solution that the authors are investigating is the use of redundant
control techniques, in order to drive a redundant underactuated manipulator away from
dynamically singular points. The redundancy could further be used to minimize/maximize a
performance criterion, such as manipulability or energy consumption, and to account for
obstacle avoidance.

In order to demonstrate the robustness of the proposed controller, we are going to present
here experiments using the full dynamic model in (13) and (14), and then following the
methodology presented in section 3.3.

The objective of the simulations presented here was to make the manipulator achieve a
final desired position, i.e., we were interested in the step response of the joint angles. We
chose to brake the passive joints whenever they reached a joint angle error of less than 0.0015
rd (approximately 0.08 degrees), with a joint velocity of less than 0.001 rdls. This ensured
that the passive joints were braked at a point where they were practically at rest and with
negligible steady-state error.

Table 2 summarizes the set of experiments, along with the gains used at each one. Table
3 presents the results obtained for each experiment, and also refers the reader to the
appropriate figures illustrating the results. All angles are in degrees.

The first experiment consisted of driving the joints over a 90 degree excursion. Note in
figure 5 that the active joint initially moves towards negative angles in order to bring the
passive joint to its desired set-point with zero velocity. This is achieved at t = 0.7392 s, when
the brake is engaged. From this point on, the active joint is self-controlled and reaches its set-
point with zero velocity after a total of 3.6804 s. In this first experiment the full dynamic
model was used.
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Table 2: Summary of experiments performed.

EXP. Robot Full Cc Ca Pc Pa Cc Ea

1 2-.ink yes 10.0 4.1 200.0 200.0 0.03 0.06

2 2-link no 10.0 4.1 200.0 200.0 0.03 0.06

3 2-link no 10.0 4.1 200.0 200.0 0.03 0.06

4 3lnk no [3o]] x1[ 0.03 0.06

Table 3: Summary of results obtained.

Final Final Brake
EXPERMENT angle angle angle applied at Figure

desired error

10  , ,r-°-° 0.7392 5

2 [] 0o.,-0°°i 0.7122 6,7

3 o {-foo,.r° 0.8610 8

[.0152]
4 45 -o.0675 0.7926 9,10

5I 0.0770 45 .oIoM.

In order to test the robustness of the VSC, the same experiment was performed following

section 3.3, i.e., only the inertia matrix was considered for control purposes. Comparing the
first and second lines of table 3, and figures 5 and 6, we can affirm that robustness to
uncertainties (in this case, modelling errors) is guaranteed. For this experiment, figure 7
shows the 2D animation of the links of the manipulator From this figure, one can understand
how the dynamic coupling is used by the active joint to control the passive one. Namely, the
active moves down until the passive reaches its set-point. Then the brake is engaged and the
active joint can move up to reach its own set-point.
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Experiment #3 consisted of controlling the passive joint in a region of great instability for

the active joint, around 01 = x/2. Note in figure 8 how the active joint move to accomplish

the proposed objective. In this experiment also the reduced dynamic model was used,

illustrating once more the robustness of the VSC.

Finally, experiment #4 was performed with the 3-link manipulator. Note in figure 9 how
the active joints act combined in order to bring the passive one to rest. Note also that after the

passive joint is braked, the active ones converge smoothly and exponentially to their set-
points. The animation in figure 10 shows various stages of the movement. In this experiment

also the full dynamic model was not used by the controller.

It can be inferred from the above discussion that the control law proposed here not only

controls effectively manipulators with passive joints, it also accounts for the uncertainties in

the dynamic model. Thus, this control law is robust enough for the problem in hand.

As a matter of comparison with previous works in this area, we also ran simulations using

the control law proposed in [1], but without using the pre-acceleration phase in order to

obtain comparable results. Namely, we repeated experiments #1 and #2, which required a 90P

excursion of both joints, with and without the use of the full dynamic model, respectively. In
order to have a fair comparison, we adopted the same saturation levels for the torque at the

activejoint. The results are shown in figures 11 and 12. The first one shows that when the full

dynamic model is used, this control law provides a performance that is comparable to that

provided by the VSC. However, it lacks the robustness necessary in this kind of system, as

we can see in figure 12. The passive joint cannot reach its set-point within a reasonable time,

and the active joint continues to bounce trying to drive the passive joint to rest.

If we compare now the present method with the one presented in [10], we can affirm that

our formulation is much simpler, and that the braking and settling times are much smaller.

As for implementation purposes, the present control law requires the computation of the

inertia matrix of the manipulator, M(q), which is a symmetric matrix. Thus, our scheme is
certainly faster in computational terms than the computed torque controller, which requires

the computation of the full dynamic model, i.e., the computation of M(q) and of b (q, 4).

a l"
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6 Conclusion

In this work, the authors demonstrated the feasibility of designing a robust controller for

underactuated manipulators. The control of such systems can be extended to the control

problem of fault-tolerant robots, space robots and hyper-redundant robot systems, where one

or more joints are passive, either because of design considerations or because of a failure.

Given the strong dependency of the control system on the dynamic model, uncertainties in
the model may result in inaccuracy and loss of stability.

The scheme proposed here consisted of a variable structure controller, used along with

the theory of sliding surfaces. This control method makes the system's state trajectory slide

over a pre-defined sliding surface in the phase plane, which in turn guarantees tracking and

robustness properties. The main point in this work was the demonstration of the controller's

robustness to parameter uncertainty. Another possible approach to cope with the uncertainties
in the system would be via the use of adaptive control techniques, as done by Gu and Xu [6].

We compared the proposed control law with the one presented in [1], and showed that our

scheme provides the system with a much greater deal of robustness, an important

characteristic in this kind of highly coupled nonlinear dynamic system.
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Figure 1: Tree-link manipulator with one passive joint.
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Figure 2: Two-link manipulator with one passive joint
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Figure 4: Determinant of M d for the 3-1ink manipulator.
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Figure 8: Rnispon of the 2-link manipulator. Experiment #.
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Figure 11: Response of the 2-link manipulator. Experiment #1 with control law from [1].
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Figure 12: Response of the 2-link manipulator. Experiment #2 with control law from [1].


